Mr
Mohanad Alkhodari
BSc, MSc
Doctoral Student
Research
Impact
DEEP BISPECTRAL IMAGE ANALYSIS FOR SPEECH-BASED CONVERSATIONAL EMOTIONAL CLIMATE RECOGNITION
Alhussein G,  Alkhodari M,  Alfalahi H,  Alshehhi A,  Hadjileontiadis L,  et al. (2025)
EmoNet: Deep Learning-based Emotion Climate Recognition Using Peers' Conversational Speech, Affect Dynamics, and Physiological Data.
Alhussein G,  Alkhodari M,  Saleem S,  Roumeliotou E,  Hadjileontiadis LJ,  et al. (2025)
Exploring emotional climate recognition in peer conversations through bispectral features and affect dynamics.
Alhussein G,  Alkhodari M,  Ziogas I,  Lamprou C,  Khandoker AH,  Hadjileontiadis LJ,  et al. (2025)
Emotional Climate Recognition in Speech-based Conversations: Leveraging Deep Bispectral Image Analysis and Affect Dynamics
Alhussein G,  Alkhodari M,  Saleem S,  Khandoker AH,  Hadjileontiadis LJ,  et al. (2025)
Pattern-based assessment of the association of fetal heart variability with fetal development and maternal heart rate variability
Widatalla N,  Alkhodari M,  Koide K,  Yoshida C,  Kasahara Y,  Saito M,  Kimura Y,  Khandoker A,  et al. (2025)
Extraction of fetal heart beat sounds in abdominal phonocardiograms using deep attention transformer network
Almadani M,  Alkhodari M,  Ghosh S,  Hadjileontiadis L,  Khandoker A,  et al. (2024)
Chapter 4 Artificial intelligence in mammography: advances and challenges
Dhou S,  Alhusari K,  Alkhodari M,  et al. (2024)
Circadian assessment of heart failure using explainable deep learning and novel multi-parameter polar images.
Alkhodari M,  Khandoker AH,  Jelinek HF,  Karlas A,  Soulaidopoulos S,  Arsenos P,  Doundoulakis I,  Gatzoulis KA,  Tsioufis K,  Hadjileontiadis LJ,  et al. (2024)
Multiorgan Phenotypes of Offspring Born Following Hypertensive Disorders of Pregnancy: A Systematic Review
Lewandowski A,  Sattwika P,  Lapidaire W,  Leeson P,  et al. (2024)
Fiber Bragg Grating Accelerometer-Based Feature Extraction for Gait Analysis
Alhussein G,  Alkhodari M,  Chi H,  Alberto N,  Antunes P,  Hadjileontiadis L,  Radwan A,  Domingues MF,  et al. (2024)
The role of artificial intelligence in hypertensive disorders of pregnancy: towards personalized healthcare.
Alkhodari M,  Xiong Z,  Khandoker AH,  Hadjileontiadis LJ,  Leeson P,  Lapidaire W,  et al. (2023)
A Comparative Study of Meningioma Tumors Segmentation Methods from MR Images
Alkhodari M,  Hassanin O,  Dhou S,  et al. (2023)
A Two-Step Pre-processing Tool to Remove Gaussian and Ectopic Noise for Heart Rate Variability Analysis
Saleem S,  Khandoker AH,  Alkhodari M,  Hadjileontiadis LJ,  Jelinek HF,  et al. (2023)
Revisiting Left Ventricular Ejection Fraction Levels: A Circadian Heart Rate Variability-based Approach
Alkhodari M,  Jelinek HF,  Saleem S,  Hadjileontiadis LJ,  Khandoker AH,  et al. (2023)
Deep Bispectral Analysis of Conversational Speech Towards Emotional Climate Recognition
Alhussein G,  Alkhodari M,  Khandoker AH,  Hadjileontiadis LJ,  et al. (2023)
Prediction of fetal RR intervals from maternal factors using machine learning models.
Widatalla N,  Alkhodari M,  Koide K,  Yoshida C,  Kasahara Y,  Saito M,  Kimura Y,  Habib Khandoker A,  et al. (2023)
Fhsu-Net: Deep Learning-Based Model for the Extraction of Fetal Heart Sounds in Abdominal Phonocardiography
Alkhodari M,  Almadani M,  Ghosh SK,  Khandoker AH,  et al. (2023)
Investigating automated regression models for estimating left ventricular ejection fraction levels in heart failure patients using circadian ECG features.
Al Younis SM,  Hadjileontiadis LJ,  Al Shehhi AM,  Stefanini C,  Alkhodari M,  Soulaidopoulos S,  Arsenos P,  Doundoulakis I,  Gatzoulis KA,  Tsioufis K,  Khandoker AH,  et al. (2023)
Heart Failure Assessment Using Multiparameter Polar Representations and Deep Learning.
Alkhodari M,  Hadjileontiadis LJ,  Jelinek HF,  Khandoker AH,  et al. (2023)
Recognition of Pediatric Congenital Heart Diseases by Using Phonocardiogram Signals and Transformer-Based Neural Networks.
Hassanuzzaman M,  Hasan NA,  Mamun MAA,  Alkhodari M,  Ahmed KI,  Khandoker AH,  Mostafa R,  et al. (2023)
Emotional Climate Recognition in Conversations using Peers' Speech-based Bispectral Features and Affect Dynamics.
Alhussein G,  Alkhodari M,  Lamprou C,  Ziogas I,  Ganiti-Roumeliotou E,  Khandoker A,  Hadjileontiadis LJ,  et al. (2023)
Random Forest and Attention-Based Networks in Quantifying Neurological Recovery
Moussa M,  Alfalahi H,  Alkhodari M,  Hadjileontiadis L,  Khandoker A,  et al. (2023)
FHSU-NETR: Transformer-Based Deep Learning Model for the Detection of Fetal Heart Sounds in Phonocardiography
Almadani M,  Alkhodari M,  Ghosh SK,  Khandoker AH,  et al. (2023)
HyperScore: A unified measure to model hypertension progression using multi-modality measurements and semi-supervised learning
Alkhodari M,  Lapidaire W,  Xiong Z,  Kart T,  Iturria-Medina Y,  Hadjileontiadis L,  Khandoker A,  Lewandowski AJ,  Banerjee A,  Leeson P,  et al. (2023)
Deep Learning-based Modelling of Complex Hypertensive Multi-Organ Damage with Uncertainty Quantification from Simple Clinical Measures
Kart T,  Alkhodari M,  Lapidaire W,  Banerjee A,  Lewandowski AJ,  Leeson P,  et al. (2023)
Automated Methods for Classification and Digitization of ECG images from CVD patients
Alkhodari M,  Mohamed Moussa M,  J. Hadjileontiadis L,  Khandoker A,  et al. (2023)
Extraction of fetal heartbeat locations in abdominal phonocardiograms using deep attention transformer.
Almadani MM,  Alkhodari M,  Ghosh SK,  Hadjileontiadis L,  Khandoker A,  et al. (2023)
Deep learning identifies cardiac coupling between mother and fetus during gestation
Alkhodari M,  Widatalla N,  Wahbah M,  Al Sakaji R,  Funamoto K,  Krishnan A,  Kimura Y,  Khandoker AH,  et al. (2022)
Similarities between maternal and fetal RR interval tachograms and their association with fetal development.
Widatalla N,  Khandoker A,  Alkhodari M,  Koide K,  Yoshida C,  Kasahara Y,  Kimura Y,  Saito M,  et al. (2022)
Machine Learning for Screening Microvascular Complications in Type 2 Diabetic Patients Using Demographic, Clinical, and Laboratory Profiles.
Rashid M,  Alkhodari M,  Mukit A,  Ahmed KIU,  Mostafa R,  Parveen S,  Khandoker AH,  et al. (2022)
Ensemble Transformer-Based Neural Networks Detect Heart Murmur in Phonocardiogram Recordings
Alkhodari M,  Azman SK,  Hadjileontiadis LJ,  Khandoker AH,  et al. (2022)
Effects of Beta-Blocker on Heart Rate Variability in Heart Failure with Preserved Ejection Fraction
Saleem S,  Alkhodari M,  Hadjileontiadis LJ,  Khandoker AH,  Jelinek HF,  et al. (2022)
Association between maternal-fetal cardiac coupling strengths with maternal and fetal parameters
Alkhodari M,  Widatalla N,  Wahbah M,  Al Sakaii R,  Funamoto K,  Krishnan A,  Kimura Y,  Khandoker A,  et al. (2022)
A two-step pre-processing tool to remove Gaussian and ectopic noise for heart rate variability analysis.
Saleem S,  Khandoker AH,  Alkhodari M,  Hadjileontiadis LJ,  Jelinek HF,  et al. (2022)
Emotional Climate Recognition in Interactive Conversational Speech Using Deep Learning
Alhussein G,  Alkhodari M,  Khandokher A,  Hadjileontiadis LJ,  et al. (2022)
Swarm Decomposition Enhances the Discrimination of Cardiac Arrhythmias in Varied-Lead ECG Using ResNet-BiLSTM Network Activations
Alkhodari M,  Apostolidis G,  Zisou C,  Hadjileontiadis LJ,  Khandoker AH,  et al. (2022)
Deep learning predicts heart failure with preserved, mid-range, and reduced left ventricular ejection fraction from patient clinical profiles
Alkhodari M,  Jelinek HF,  Karlas A,  Soulaidopoulos S,  Arsenos P,  Doundoulakis I,  Gatzoulis KA,  Tsioufis K,  Hadjileontiadis LJ,  Khandoker AH,  et al. (2021)
Revisiting left ventricular ejection fraction levels: a circadian heart rate variability-based approach
Alkhodari M,  F. Jelinek H,  Saleem S,  J. Hadjileontiadis L,  H. Khandoker A,  et al. (2021)
Estimating Left Ventricle Ejection Fraction Levels Using Circadian Heart Rate Variability Features and Support Vector Regression Models.
Alkhodari M,  Jelinek HF,  Werghi N,  Hadjileontiadis LJ,  Khandoker AH,  et al. (2021)
Mobile Application for Ulcer Detection.
Fraiwan L,  Ninan J,  Al-Khodari M,  et al. (2021)
Machine Learning for Screening Microvascular Complications in Type-2 Diabetic Patients using Demographic, Clinical, and Laboratory Profiles
Rashid M,  Alkhodari M,  Mukit A,  Ahmed KIU,  Mostafa R,  Parveen S,  Khandoker A,  et al. (2021)
Screening Cardiovascular Autonomic Neuropathy in Diabetic Patients With Microvascular Complications Using Machine Learning: A 24-Hour Heart Rate Variability Study
Alkhodari M,  Rashid M,  Mukit MA,  Ahmed KI,  Mostafa R,  Parveen S,  Khandoker AH,  et al. (2021)
Automatic identification of respiratory diseases from stethoscopic lung sound signals using ensemble classifiers
Fraiwan L,  Hassanin O,  Fraiwan M,  Khassawneh B,  Ibnian AM,  Alkhodari M,  et al. (2021)
An Unsupervised Parametric MixtureModel for Automatic Three-DimensionalLung Segmentation
Ghazal M,  Ali S,  AlKhodari M,  El-Baz A,  et al. (2021)
Prediction of LVEF using BiLSTM and Swarm Decomposition-based 24-h HRV Components
Alkhodari M,  Apostolidis G,  Jelinek HF,  Hadjileontiadis LJ,  Khandoker AH,  et al. (2021)
Image Classification in Microwave Tomography using a Parametric Intensity Model
Alkhodari M,  Zakaria A,  Qaddoumi N,  et al. (2021)
Investigating Circadian Heart Rate Variability in Coronary Artery Disease Patients with Various Degrees of Left Ventricle Ejection Fraction.
Alkhodari M,  Jelinek HF,  Werghi N,  Hadjileontiadis LJ,  Khandoker AH,  et al. (2020)
Automatic identification of respiratory diseases from stethoscopic lung sound signals using ensemble classifiers
Fraiwan L,  Hassanin O,  Fraiwan M,  Khassawneh B,  Ibnian AM,  Alkhodari M,  et al. (2020)
Guidelines Towards a Wearable Microwave Tomography System
Alkhodari M,  Zakaria A,  Qaddoumi N,  et al. (2019)
Preliminary Numerical Analysis of Monitoring Bone Density Using Microwave Tomography
Alkhodari M,  Zakaria A,  Qaddoumi N,  et al. (2019)
Fetal ECG Extraction Using Independent Components and Characteristics Matching
Alkhodari M,  Rashed A,  Alex M,  Yeh N-S,  et al. (2018)
Swarm Decomposition Enhances the Discrimination of Cardiac Arrhythmias in Varied-Lead ECG Using ResNet-BiLSTM Network Activations
Alkhodari M,  Apostolidis G,  Zisou C,  Hadjileontiadis LJ,  Khandoker AH,  et al. (2018)
Diabetic foot ulcer mobile detection system using smart phone thermal camera: a feasibility study.
Fraiwan L,  AlKhodari M,  Ninan J,  Mustafa B,  Saleh A,  Ghazal M,  et al. (2017)
Temporal patterns of pre- and post-natal target organ damage associated with hypertensive pregnancy: a systematic review
Cutler HR,  Barr L,  Sattwika PD,  Frost A,  Alkhodari M,  Kitt J,  Lapidaire W,  Lewandowski AJ,  Leeson P,  et al. ()
TEMPORAL PHENOTYPES OF TARGET ORGAN DAMAGE ASSOCIATED WITH HYPERTENSIVE PREGNANCIES: AN EVIDENCE SYNTHESIS WITHOUT META-ANALYSIS
Cutler H,  Barr L,  Sattwika PD,  Frost A,  Alkhodari M,  Kitt J,  Lapidaire W,  Lewandowski AJ,  Leeson P,  et al. ()
MULTI-ORGAN PHENOTYPES OF OFFSPRING BORN FOLLOWING HYPERTENSIVE DISORDERS OF PREGNANCY: A SYSTEMATIC REVIEW
Sattwika PD,  Schuermans A,  Cutler HR,  Alkhodari M,  Anggraeni VY,  Nurdiati DS,  Lapidaire W,  Leeson P,  Lewandowski AJ,  et al. ()
XDEEPPOLAR: A NEW CLINICAL TOOL FOR MULTIPARAMETER DATA INTEGRATION TO ASSESS LEFT VENTRICULAR EJECTION FRACTION
Alkhodari M,  Khandoker AH,  Jelinek HF,  Hadjileontiadis LJ,  et al. ()