Professor
Tingting Zhu
BEng DPhil (Oxon) MSc
Associate Professor in AI for Digital Health
Non-Tutorial Fellow at Kellogg College
Royal Academy of Engineering Fellow
Stipendiary College Lecturer at Mansfield College
Email:
College: Kellogg College, Mansfield College

Professor Tingting Zhu graduated with the DPhil degree in information and biomedical engineering at Oxford University in 2016. This followed her MSc in Biomedical Engineering at University College London and BEng (Hons) in Electrical Engineering from the University of Malta.

After DPhil, Tingting was awarded a Stipendiary Junior Research Fellowship at St. Hilda’s College, Oxford. In 2018, Tingting was appointed as the first Associate Member of Faculty at the Department of Engineering Science; in 2019, following the award of her Royal Academy of Engineering Research Fellowship, she was appointed to full Member of Faculty at the Department of Engineering Science. Tingting is a Non-Tutorial Fellow at Kellogg College and a Stipendiary College Lecturer at Mansfield College.

Tingting’s research interests lie in machine learning for healthcare applications and she has developed probabilistic techniques for reasoning about time-series medical data. Her work involves the development of machine learning for understanding complex patient data, with an emphasis on Bayesian inference, deep learning, and applications involving the developing world.

Biomedical Signal Processing and Instrumentation

Computational Health Informatics Lab

  • Machine learning for improving decision-making with telemedicine
  • Prognosis and diagnosis of adversarial events in multimorbid population
  • Dynamic modelling for understanding the impact of interventions on the hospital system
  • Phenotyping patients with complex diseases via electronic patient information
  • Machine learning for early cancer detection as well as treatment response
  • Digital twin and its application in healthcare
  • Modelling of treatment effect and treatment recommendation

Prof Zhu offers a wide range of machine learning projects for healthcare in both developed and developing countries. Prospective DPhil students should get in touch indicating their interest.

 

A scalable federated learning solution for secondary care using low-cost microcomputing: privacy-preserving development and evaluation of a COVID-19 screening test in UK hospitals
Soltan AS,  Thakur A,  Yang J,  Chauhan A,  D'Cruz LG,  Dickson P,  Soltan MA,  Thickett DR,  Eyre DW,  Zhu T,  Clifton DA,  et al. (2024)
Medical records condensation: a roadmap towards healthcare data democratisation
Thakur A,  Wang Y,  Dong M,  Ma P,  Petridis S,  Shang L,  Zhu T,  Clifton D,  et al. (2024)
Decoding 2.3 million ECGs: interpretable deep learning for advancing cardiovascular diagnosis and mortality risk stratification
Lu L,  Zhu T,  Ribeiro AH,  Clifton L,  Zhao E,  Zhou J,  Ribeiro ALP,  Zhang Y-T,  Clifton DA,  et al. (2024)
Feasibility of wearable monitors to detect heart rate variability in children with hand, foot and mouth disease.
Nhan LNT,  Hung NT,  Khanh TH,  Hong NTT,  Ny NTH,  Nhu LNT,  Han DDK,  Zhu T,  Thanh TT,  Tadesse GA,  Clifton D,  Van Doorn HR,  Van Tan L,  Thwaites CL,  et al. (2024)
Student Loss: Towards the Probability Assumption in Inaccurate Supervision.
Zhang S,  Li J-Q,  Fujita H,  Li Y-W,  Wang D-B,  Zhu T-T,  Zhang M-L,  Liu C-Y,  et al. (2024)
Data encoding for healthcare data democratization and information leakage prevention
Thakur A,  Wang Y,  Armstrong J,  Zhu T,  Abrol V,  Clifton DA,  et al. (2024)
CliqueFluxNet: Unveiling EHR Insights with Stochastic Edge Fluxing and Maximal Clique Utilisation using Graph Neural Networks
Molaei S,  Bousejin NG,  Ghosheh GO,  Thakur A,  Chauhan VK,  Zhu T,  Clifton DA,  et al. (2024)